nlimit: A New Voluntary Bandwidth Limiting Facility

Sid Bottoms

Thede Loder

Rick Wash

December 11, 2002

Abstract

This paper introduces nlimit, a new voluntary
bandwidth limiting system for UNIX. nlimit al-
lows users to voluntarily limit their own net-
work bandwidth usage by setting per-socket, per-
process or per-user limits. The limits are then
enforced by the UNIX kernel by shaping the out-
going stream of packets. Our system is effective,
easy to use, and provides a good method for con-
trolling network resource usage.

1 Introduction

Increasingly, administrators and users of network
services need the ability to manage their use of
bandwidth. This management may require fine
tuning at the per-user (policy based) or even
per-socket level. Some web servers, file servers,
and peer to peer file-sharing agents now include
such capabilities, implemented as user-level li-
braries. Examples include Apache, Zeus (web
server), proftpd, pureftpd, Gnut, and Morpheus.

Unfortunately, using the kernel for bandwidth
management is not currently available. Modern
TCP/IP stacks and standard system call inter-
faces do not provide a means, leaving each appli-
cation designer to build their own.

At the same time, another a common use of the
network, that of interactive sessions (telnet and
ssh), has exposed limitations in standard TCP. In-
teractive sessions may become extremely sluggish
(due to increased latency) on single and multi-user
systems when the connection to the network is
saturated by other network uses, often controlled

from the same machine. This is frustrating to
both home users and those on ISP-operated multi-
user systems, where one user can ruin all of the
other active sessions by starting a few simultane-
ous downloads.

To address the needs of resource managing ap-
plications and servers, and with the idea that the
operating system is an ideal place to address re-
source management issues, we have designed a
common solution: a kernel provided bandwidth
management APT for both voluntary and involun-
tary limiting of connection throughput.

1.1 Existing Solutions

There are several existing application independent
solutions. The two most common types are user-
level libraries linked at runtime and external traf-
fic shaping, separate from a process. User-level li-
braries work by intercepting calls to the libc func-
tions for read and write. Traffic shaping typically
uses packet filtering to match TCP/IP streams
and a kernel facility for changing flow rates. While
in some cases effective, each of these has a number
of drawbacks:
User Level Libraries

e Fine grained timing available in the kernel
and tcp/ip stack itself are unavailable to user
programs

e Network resources are inefficiently used (large
buffers are allocated in the kernel for fast
flows, but may be unnecessary)

e Increased user and/or programmer work to
setup

2 RELATED WORK

2.2 Class-Based Queuing (CBQ)

e Lack of clear winner (non standardized ap-
proaches, multiple implementations)

Traffic Shaping

e Existing bandwidth limiting is on a per IP
address/port or per interface basis, and must
be configured ahead of time

e Management of shaper requires root access

e Inaccessible to user programs (except via con-
voluted scripts)

e No policy level control for users, processes, or
sockets

e No way to limit on a per connection basis
unless all connections are symmetric.

The layout of the paper is as follows. In Sec-
tion B, we discuss related work. In Section B, we
describe the API and the userland tools that are
used to access our system. Section fl] describes the
design and implementation of the kernel portion
of our system, which is where the limiting actually
happens. Then in Section [describes our evalua-
tion of the effectiveness of our solution. Section B
discusses some possibilities for future work. Fi-
nally Section B gives our conclusions.

2 Related Work

2.1 ALTQ

ALTQIP] is a traffic shaping scheme built into all
versions of BSD. ALTQ allows the administra-
tor to set up different queuing disciplines. There
are several different queuing schemes, including
CBQ, HFSC, and RED. Although ALTQ’s queu-
ing schemes allow sophisticated queuing control,
ALTQ only supports prioritization based on port
numbers. Our solution provides finer control
based on processes, users, and sockets. Another
problem with the existing ALTQ interface is that
it is set up on a semi-permanent basis using a con-
figuration file; it was not designed for dynamic
changes.

2.2 Class-Based Queuing (CBQ)

CBQJ3] is a hierarchical link-sharing algorithm
that provides a mechanism for fairly dividing
bandwidth between applications depending on
their needs. Its ability to partition bandwidth
consumers is an important aspect that we uti-
lize. CBQ is a very powerful and flexible algo-
rithm.This algorithm has the advantage of being
able to guarantee each application a share of the
bandwidth during congestion, while still allowing
excess bandwidth to be utilized. We use it as the
underlying discipline behind our system.

2.3 Netbrake

Netbrake[l1] is a user-level program that allows
bandwidth to be limited on a per-process basis.
It wraps calls to read) ,write(), socket (), and
so on to achieve the desired effect. To limit a
process’s bandwidth, you run:

% netbrake <bpslimit> <programname>

Although simple to implement and use, netbrake
is limited in several ways: it can’t differentiate be-
tween sockets in the same program, and it has no
mechanism for the process to limit its own band-
width. In addition, the bandwidth limit of a pro-
cess can’t be changed once the process is running.

2.4 Wonder Shaper

Wonder Shaper[d] is a tool that uses the Linux
CBQ system. It sets the total bandwidth usage
to just under the actual maximum. The author
found that this simple step dramatically decreased
the latency for interactive applications. It turned
out that much of the latency was being caused by
overflowing queues in this modem, and that set-
ting a slightly lower bandwidth limit allowed the
queues to stay almost empty. Similar to Netbrake,
the main difference between this tool and our so-
lution is that this tool can only work with ports
or an entire interface.

3 API DESIGN

3.2 Device API

2.5 DummyNet

Originally designed as a research tool, Dum-
myNet[5] is used to simulate networks. The user
can specify a specific connection’s speed, thereby
limiting that interface’s bandwidth. DummyNet
has been used outside of the research world for
bandwidth management. However, DummyNet
was not intended to be a general purpose tool, and
it implements several simulation functions that
are not needed for a bandwidth-management sys-
tem. Furthermore, DummyNet lacks the ability
to limit bandwidth on a per-user or per-process
basis.

2.6 Diffserv and Intserv

Diffserv[f], or differentiated services, is a QoS
scheme for TCP/IP that uses “relative sensitiv-
ities” of traffic to delay and loss. This will not
work for us, since out target applications require
hard limits on bandwidth.

Intserv[d] is closer to our work, since it can at-
tempt to set bandwidth to a certain level. How-
ever, the processing for bandwidth control is done
on the network. The significant overhead from
this processing is an unnecessary burden for the
Internet routers, since bandwidth limiting can be
done on the host end.

3 API Design

We have provided a useful application program-
ming interface that allows a process to voluntar-
ily limit its own bandwidth on a given socket, or
process-wide. Also, it will allow another process
to impose bandwidth limitations based on user ID
or process ID. We have provided a small userland
utility to expose some of this functionality to the
user.

3.1 Socket API

The first part of the API is designed to allow a
process to set a bandwidth limit on each of its own
sockets individually. In order to achieve this, we

setsockopt(socketfd, ..., TCP_RCVRATE, n)
Set the inbound bandwidth limit for this
particular socket.

setsockopt(socketfd, ..., TCP_SNDRATE, n)
Set the outbound bandwidth limit for this
particular socket.

getsockopt(socketfd, ..., TCP_RCVRATE, n)
Returns the current inbound bandwidth
limit for this particular socket.

getsockopt(socketfd, ..., TCP_SNDRATE, n)
Returns the current outbound bandwidth
limit for this particular socket.

Figure 1: Socket API Summary

allow a user to set bandwidth limit as a standard
socket option. The setsockopt(2) system call
interface is utilized as a simple but powerful API.
This permits a separate and different limit on each
socket. The socket API is summarized in Figure [I.

The API supports setting any limit from 1 byte
per second to 1 gigabyte per second. The API
also supports changing the bandwidth limit in the
middle of a connection as often as needed. Setting
the bandwidth limit to 0 removes the limit from
the socket.

At the moment, nlimit does not support lim-
iting downloads. As such, attempting to set the
receive bandwidth rate will return an error.

3.2 Device API

The rest of the nlimit API consists of a new de-
vice, /dev/altq/nlimit. This device is accessed
solely through the ioct1(2) system call. nlimit
has 4 different calls that can be made. Through
this device it is possible to set a limit on all sock-
ets of a given process, or all sockets created by a
given user. A summary of this API is available in
Figure B.

In setting a process limit, the limit applies to
every socket in the process such that the total
bandwidth used by all of the sockets does not ex-

4 KERNEL DESIGN

3.3 nlimit Utility

ioctl(/dev/altq/nlimit,
NLIMIT_SETLIMIT_USER, uid, n)
Set the upload bandwidth limit for all
sockets/processes owned by a given uid. The
sum total of all bandwidth used by this user
will not exceed n.

ioctl(/dev/altq/nlimit,
NLIMIT_GETLIMIT_USER, uid)
Return the bandwidth limits (both upload
and download) for the given user.

ioctl(/dev/altq/nlimit,
NLIMIT_SETLIMIT_PROCESS, pid,n)
Set the upload bandwidth limit for all
sockets in a given process. The sum total of
all bandwidth used by this process will not
exceed n.

ioctl(/dev/altq/nlimit,
NLIMIT_GETLIMIT_PROCESS , pid)
Return the bandwidth limits (both upload
and download) for the given process.

Figure 2: Device API Summary

ceed the process bandwidth limit. Each individ-
ual socket can use as much bandwidth as it likes
(unless they are also limited), but they will com-
pete for the bandwidth available for the process.
This limit only applies to sockets that are created
by this process, not to sockets that it receives via
fork(2) or via file descriptor passing.

A process limit can only be set for a currently
running process, and is automatically destroyed
when the process terminates. Also, root can set
a process limit on any process in the system, but
a normal user can only set process limits on pro-
cesses that are running as their user 1D.

User bandwidth limits allow a user to set a max-
imum bandwidth used by all of the user’s pro-
cesses and sockets. This is similar to system re-
source limits on CPU time and processes. When
set, the sum of all the bandwidth used by all sock-
ets owned by the user must not exceed the user
bandwidth limit.

A user limit can be set at any time, and is never
automatically removed. Currently, root can set a
user limit on any user (including root), and normal
users can only set a limit on themselves. Also,
there is no enforcement on limits set by root, so
a normal user can remove a limit that was set by
root.

3.3 nlimit Utility

Finally, a userland utility was written to permit
easy access to this API. The utility, called nlimit,
gives the ability to set or remove user or process
limits from the command line. This utility has a
fairly simple interface:

nlimit [-p pid | -u user] -o limit

To set a limit, specify either a user or a process
to limit, and the limit that is to be set. Setting
a limit of 0 removes the bandwidth limit. This
provides a simple way to limit a connection of any
process running on the machine, even processes
that don’t have support for nlimit.

4 Kernel Design

nlimit leverages the AltQ[?, B] packet queuing and
shaping framework as it exists in NetBSD[d] 1.6.

Currently, the existing AltQ framework has
hooks into the TCP/IP stack. Whenever the
TCP/IP stack wishes to output a packet, it makes
a call into AltQ’s Enqueue operation. Enqueue
then classifies the packet and puts it onto a
queue according to the specified queuing disci-
pline. Then, at various points in time (such as
when the network interface has open buffer space)
the network interface will call AltQ’s Dequeue op-
eration to retrieve a packet. All of the network
interface drivers include the proper AltQ hooks in
NetBSD 1.6. These queues are currently only for
sending data.

The behavior of these two operations is depen-
dent on the pluggable queuing discipline used by
AltQ. Each discipline can make its own choices
on which packets from the queue to return to the

4 KERNEL DESIGN

4.1 Queuing Discipline

Figure 3: Class Hierarchy

network interface driver and when to return them.
This allows different scheduling and quality-of-
service algorithms to be dropped into the system
and chosen between easily.

nlimit includes a new queuing discipline for
AltQ that regulates data on the basis of the orig-
inating user, process, and/or socket. Unfortu-
nately, AltQ does not currently permit classifying
and queuing on this information. We modified
other parts of the kernel pass necessary informa-
tion into the AltQ system.

4.1 Queuing Discipline

First is our queuing discipline. Named nlimit, it
is derivative of the Class-based Queuing system|[3].
It uses the same mechanisms as CBQ to actually
limit the packets, but nlimit manages a custom
hierarchy of classes to achieve its goals.

4.1.1 Class Hierarchy

At the root of the hierarchy is a default class. All
packets that don’t match any class will automati-
cally be put into this class. (The only exception is
the small control class which reserves bandwidth
for important control protocols such as ICMP and
IGMP.) Each new limit that nlimit places will have
its own class with a custom bandwidth limit on it.
Directly under the default class is where all user-
wide limit classes will be placed. All process-wide

limits that are set will be made subclasses of the
appropriate user limit class if it exists, and placed
under the default class if it does not. All socket-
specific limit classes will be placed as subclasses of
their process’s process-wide limit class if it exists,
and if it does not will be placed under the creating
user’s class if it exists, and under the default class
otherwise. Figure B shows a view of the hierarchy.

This hierarchy allows the system to rate limit
based on any combination of user ID, process 1D,
and socket, and all limits placed in the system
will be enforced. Also, this allows all of a user’s
processes to compete for the bandwidth that a
user has, but to not go over that bandwidth. A
similar situation exists for sockets in a process.

Much work went into properly managing this
hierarchy, giving the ability to insert and remove
classes from arbitrary places in the hierarchy.
Moving classes around when adding or deleting
a class that has multiple children required some
careful management.

4.1.2 Limit Operations

There are three possible actions that can happen
on a limit. A new limit can be created, an ex-
isting limit can be updated, and a limit can be
destroyed.

When a new limit is created, three things must
happen. First, a class corresponding to this limit
must be created. The class contains all of the
data necessary to exact the bandwidth limit (such
as packet queue data structures, etc.). This class
computes a “nanoseconds per byte” value which
is used to perform the actual bandwidth limit-
ing. Second, this class must be inserted into the
proper place in the class hierarchy described in
section BTl

Finally, a new filter data structure must be cre-
ated. This filter allows a packet classifier to as-
sociate every packet that is to be sent with a
class that contains the bandwidth-limited queue
for that packet. If the packet does not match any
filters, then it gets associated with the unlimited
default class.

Updating an existing limit is a straightforward

4 KERNEL DESIGN

4.2 Event Traps

process. A new “nanoseconds per byte” value is
computed and stored in the class data structure.
From this point forward, the class will perform
all calculations based on this new value, and the
bandwidth will be limited to the new limit.

Destroying a limit is slightly more difficult.
When a limit is deleted, the class data structure
and all associated filters must be removed and
freed. Also, the parent class must be updated to
know that it has lost a child. And any children of
the deleted class must also be moved to now be
children of the deleted class’s parent.

Currently, removing a class that has children
classes causes a race condition kernel panic, so
that has been disabled in the current version. We
hope to correct this problem in the future.

4.1.3 Packet Classification

There are three types of filters that nlimit sup-
ports. First is one that will match only a specific
socket on the machine. nlimit currently supports
limiting TCP sockets, so the 5-tuple (source IP,
source port, destination IP, destination port, pro-
tocol number) is unique for every socket on the
machine. As such we create a filter that contains
this 5-tuple of information, and can easily match
this for every packet it sees. The second type of
filter is a process filter. This filter simply contains
a process ID to match. The third type of filter is
a user filter which contains a user ID to match.

Now that we have a set of filters that can asso-
ciate packets to classes, we have to create a new
classifier that can perform this association. The
filter for the first type of filter, the socket filter,
is fairly simple. We look in the packet for the 5-
tuple of the information we need. Then we look
through our list of socket filters and see if any of
them have the same 5-tuple of information.

Next are user and process filters. These are
more difficult to match since each packet does
not directly contain this information. What we
can do, however, is lookup the TCP control block
structure that the packet came from. The TCP
control block stores all of the information needed
to manage a TCP connection. We store the user id

and the process id of each socket in its TCP con-
trol block structure. Now we have enough infor-
mation to look through the list of user and process
filters and see if any of them match the packet.

Finally, now that we have up to four classes
which match this packet (three filter matches plus
the default class). We look at the limits and see
which limit is the slowest limit of the three and
assign the packet to that class. We choose the
slowest limit among the set to insure that a class
can never go over any limit in its hierarchy.

Currently, our classifier performs all of these
operations for every packet. This unfortunately
has some CPU overhead on the network stack
and can limit the maximum throughput a little
bit. For future work we plan on implementing
some optimizations to this system, such as caching
the searched-for TCP control block structures and
ascending the hierarchy of classes to find parent
classes (since all matches must be in a vertical
chain in the hierarchy).

4.2 Event Traps

For nlimit to function properly, some specific ker-
nel events must be trapped and have hooks added
to them. The two in particular that must be
trapped are socket closing and process exiting.

The closing of a socket must be trapped so that
we can destroy any limits that are associated with
the socket. This is difficult because a socket is
not truly closed when a process exits or a pro-
cess calls close(2) on the socket. This is because
TCP might need some extra time to send all of
the data in the queue and to receive any data in
transit afterwards. But finally, once all of that
has been done, the socket is destroyed, and when
this happens any limit associated with this socket
is also destroyed.

The termination of a process must also be
trapped in order to clean up any process limits
associated with that process. We don’t want the
limits to hang around and then end up limiting
some other unfortunate process that was unlucky
enough to get the same PID.

In addition to these two traps, we also had to

5 EVALUATION

5.1 Methodology

trap the TCP connection phase. Since all the
parts of the socket 5-tuple are not assigned un-
til after the connection has been established, we
do not actually create the limit until just after
the connection was established with the remote
machine. (Just after we receive the SYN-ACK
packet) This has the side affect that the initial
SYN packet is not counted toward the bandwidth
limit.

4.3 Data Structure Modifications

The only system data structure that we had to
modify is the TCP control block structure. Four
new fields were added to this structure to store
nlimit data.

The first two new fields are to store the send and
receive bandwidth limits for this socket. These
two fields are necessary in the case that a user
calls setsockopt(2) before the connection is es-
tablished. The new limits are stored in the TCP
control block, and after the connection is estab-
lished they are used to create the new bandwidth
limits.

The second two fields are the user ID and the
process ID that initially opened the socket. These
are used in multiple places. First of all, they are
stored into the nlimit data structures to enable
matching for user limits and process limits. Sec-
ondly, they are stored in all of the socket and pro-
cess limit filters to make it easier to find which
classes correspond to which users and processes.

This brings up another limitation of nlimit.
The user ID and process ID are only stored at
creation time. This means that a process that
changes its user ID (via setuid(2)) will be lim-
ited under the original ID not the new ID. Like-
wise, if a socket file descriptor gets passed among
processes (via file descriptor passing or fork(2)),
only the limit corresponding to the process 1D
that opened the socket will apply.

5 Evaluation

For our evaluation, we wanted to verify that our
modifications met the following conditions:

1. Our solution correctly limits bandwidth

based on socket number, process id, and user
id

2. The limiting should not be bursty
3. Limiting should be able to improve latency

4. The limiting should not introduce unaccept-
able performance decreases

5.1 Methodology

For all of our throughput and latency tests, we set
up a simple server on a foreign host that acted as a
sink for all data sent to it. We then sent data from
our nlimit computer and measure the throughput
on the network using tcpdump. In addition, the
test programs spawned ping commands to mea-
sure the latency seen by interactive programs.

We tested nlimit on several different systems.
One system consisted of a laptop connected over a
100 Mbps LAN to a single server. We also verified
these tests using a cable modem with a 120 Kbps
upload speed. We also performed some tests on a
DSL line.

5.2 Verifying Functionality

To establish the functionality of our solution, we
measured the throughput on an unlimited con-
nection, and then measured the throughput with
socket limiting enabled. As Figure B shows,
our system successfully limited the bandwidth.
The saturated connection displays a great deal of
burstiness. The throughput on the limited con-
nection, on the other hand, stays relatively con-
stant.

5.2.1 Socket Limits

In a production systems, there would most likely
be several limited sockets running at the same
time. Therefor, it was important for us to look at
the behavior of multiple limited sockets. Figure
shows the results from a test that forks off sev-
eral connections, each with its bandwidth limited
to 3 KBps. Although the individual sockets are

5.2 Verifying Functionality

5 EVALUATION

Effect of Bandwidth Limiting

vvvvv

P

=zl

i S N

--- Unlimited Bandwidth

— 12 kbpslimit

|
100

Time(s)

g

Yol

(sdq) ypimpue

|
o

g snosuejuelsu |

Figure 4: Effect of Bandwidth Limiting on Connection Bandwidth

Effect of Multiple Limited Sockets

Socket 1

--- Socket 2

-- Socket 3

- Socket 4
i

H

— Entire Process
I\i: !'
if

i

1 OTTTIIIINes SR
Q
: :

(sda) yipimpueg snosueiuersu|

15000

100

Time(s)

Figure 5: Multiple Limited Sockets

5 EVALUATION

5.4 Latency

limited to approximately the right amount, they
have a high degree of burstiness. The burstiness
of the individual connections adds up to make the
overall throughput very bursty.

We found that as the bandwidth limit ap-
proached the packet size, the transmission be-
comes more bursty. This happens because ALTQ
limits throughput based on packets; it does not
break up a packet to achieve the exact rate spec-
ified by the limit. This behavior is correct, since
breaking the packets into smaller packets would
interfere with the functionality of TCP. Moreover,
the overall bandwidth averages out to be correct,
and testing shows that we still achieve our goal
of limiting the latency. A more thorough ex-
amination of the effects of small packet sizes on
ALTQ/CBQ can be found in Russoli0].

5.2.2 Process and User Limits

In addition to testing the functionality of the
socket-based limiting, we also tested the process
and user-based limiting. Figure @ shows our re-
sults for setting a process bandwidth limit on
a multi-threaded program with four connections.
This graph clearly shows the successful setting of
the limit at 12 KBps. Individual connections com-
pete for bandwidth in the same manner that they
would if there was no limiting at all. Although not
shown here, the bandwidth data for user-based
limiting is essentially the same.

5.3 Low Bandwidth Connections

The usefulness of nlimit is determined to a large
extent on what kind of connection your system
has to the Internet. In the cable modem system,
we saw massive gains in interactive performance
when we turned on bandwidth limiting. This hap-
pens because the computer sends data to the cable
modem much faster than the modem can send the
data onto the network. The send queue on the ca-
ble modem then fills up and there is no room for
interactive data to pass through. The DSL con-
nection saw this behavior to some extent, but the
higher upload speed of DSL means the increase

in latency during the saturation tests wasn’t as
significant.

At the opposite end of the performance spec-
trum is the lab PC on a 100 Mbps connection
across an empty network. In this situation, we
can definitely limit the bandwidth as shown by
our tests. However, we found that the latency
remained relatively constant. This phenomenon
arose because the computer is actually sending
data just as fast as it can generate it.

5.4 Latency

To investigate the effects of rate limiting and com-
petition between multiple simultaneous connec-
tions on latency, use again used the sink on a re-
mote host across a WAN link.

Our test bed for this set of tests consisted of
our modified NetBSD running as a guest oper-
ating system in VMWare Workstation on a Dell
Inspirion 4000 laptop (256 MB, 100MB/sec Eth-
ernet, 650 MHz Pentium) running Windows XP.
The laptop was connected to a NAT-hidden iso-
lated 100MB/sec LAN segment, and the NAT de-
vice was connected directly to a DSL line to the
Internet. The DSL line had ISP imposed limits
of 1.5 Mb/sec downstream and 768 kbps/sec up-
stream, respectively.

For each test using limiting, we started 1,
2, 4, or 8 nsend processes, each with a single
setsockopt () limited socket. The bandwidth in
each was set to %, where n is the total number of
processes in the run and b is the total bandwidth.
We used total bandwidths of 8KB/sec, 64KB/sec,
256KB/sec. 8K /sec was well within the maximum
limit of the DSL line, 64KB/sec was within about
90%, and 256 KB/sec well beyond. We also ran
the tests with no limiting.

Figure [0 shows these latency results. With a
saturated link, the latency increases dramaticly
with additional competing connections. Of par-
ticular interest are the results for 64KB/s aggre-
gate throughput. This bandwidth is close to the
saturation bandwidth of the link, yet even with 8
simultaneously connections, latency remains close
to the minimum. Interactive sessions have am-

5 EVALUATION 5.4 Latency

Effect of Multiple Sockets on a Process Limit

15000 | |

(I Y

10000 |- — Entire Process .
— Socket 1
} — Socket 2
- Socket 3
-- Socket 4

5000

I nstantaneous Bandwidth (bps)

Figure 6: Multiple Unlimited Sockets Competing for Process Bandwidth

Effect of Limit and Competition on Latency

1200 T
I B 1 Socket)
1000~ 2 Sockets |
[4 Sockets
i B3 8 Sockets .
—~ 800~ —
[}
g i |
g 600(- i
5] i |
=
= 400k .
200 -
0 6k
Bandwidth Limit

Figure 7: Effect of Limit and Competition on Latency

10

6 FUTURE WORK

Kernel | Original nlimit
nsend 7049000 2736000
slurp 6704000 3970000
socket-test | 3461000 1966000

Table 1: Maximum Bandwidth (bytes per second)
With and Without nlimit

Kernel | Average bps Std-dev
Original 2.24 1.64
nlimit 1.311 0.231

Table 2: Latency Variation (ms) With and With-
out nlimit

ple remaining bandwidth to preserve low latency,
demonstrating the benefit of voluntary limiting.

5.5 Performance

In order to evaluate the effects of adding nlimit
to the networking stack in the kernel, we ran ad-
ditional tests to test the maximum throughput.
We compared the performance of an unmodified
kernel to that of an nlimit enhanced kernel when
transferring data across a 100 MB/sec isolated
LAN segment. The results are presented in Ta-
ble 0.

In this set of test, the ‘slurp’ program measured
the effects of limits on upstream bandwidth when
downloading a large file. It worked by connecting
to the chargen port of inetd on the target machine,
then reading the output as fast as possible. We
checked the target machine to be sure that it was
not the bounding performance factor.

The results show that nlimit introduces signifi-
cant overhead. For instance the rate of transmis-
sion with nsend in the original kernel is 2 times
faster than with nlimit. We suspect this is due to
the much greater effort of classifying packets re-
quired by nlimit. Also, nlimit is not performance
tuned. Section EI-3 discusses tuning strategies in
more detail.

Latency, shown in Table B, was less for the
nlimit kernel than for for the original. This arises
from ALTQ, which has the effect of normalizing

11

the latency.

6 Future Work

There are a number of extensions to our existing
nlimit infrastructure that would be interesting.
First of all, it would be interesting to implement
receive limits in AltQ and nlimit. Receive limits
are non-trivial to get working properly and are
currently unsupported.

There are a number of areas of our implemen-
tation that need work. First of all, our classifier
should be much faster, since it needs to be called
for every packet sent out over the network inter-
face. Some methods of improving performance
were discussed in Section I 3.

Secondly, our implementation currently has a
maximum bandwidth limit of 1 gigabyte per sec-
ond. This is due to an overflow of a 32-bit inte-
ger. With network speeds increasing beyond this,
it would be good to modify this to use a 64-bit
integer to remove this limitation.

A third area that would be interesting to im-
prove would be to properly handle sockets that
get passed between processes or between users.
Currently, a socket receives the limits of the pro-
cess that created it, and the user that the process
was running as when at creation time. Thanks to
fork(2) and descriptor passing, it is possible to
have a socket being used by multiple processes.
It should then be subject to the process limits
for both of these processes. Also, setuid(2) can
cause a process to change who it is running as.
This can be used as a way to get around user lim-
its.

Another area that could use improvement is the
permissions checking on user and process limits.
The superuser should be able to set a maximum
user bandwidth that the user cannot remove and
have the user not be able to go over this band-
width. This would make the user limits be along
the lines of standard system resource limits. The
same thing should be true for processes, in that
root should be able to set a limit that the user
cannot subsequently remove.

REFERENCES

It should also be possible to extend the
altq.conf syntax to include setting up some de-
fault bandwidth limits upon initialization. This
would be useful to automatically limiting all scp
session or automatically limiting all gtk-gnutella
connections.

Finally, nlimit should be ported to other op-
erating systems such as OpenBSD, FreeBSD, and
Linux.

7 Use of the AltQ Framework

The use of the AltQ framework was a design de-
cision that was made early in this project. It
has proven to have many advantages, but also has
been shown to have a number of disadvantages.

The use of AltQ allowed us to utilize the exist-
ing bandwidth limiting code saved us a lot of time
and effort. AltQ already has hooks into the TCP
stack and into all of the network device drives for
sending and receiving packets. It also does all of
the packet queue maintenance. This greatly sim-
plified our implementation, as we could focus on
setting and using the bandwidth limits.

Our use of the CBQ framework also simplified
the project by allowing us, through the CBQ class
hierarchy, to create bandwidth limits for users
and processes in addition to sockets. Since CBQ
was designed to manage multiple queues (one per
class), this made the nlimit implementation sim-
pler.

Unfortunately, using AltQ did have a number
of unforeseen downsides. First of all, AltQ does
not support setting receive bandwidth limits, only
send bandwidth limits. Receive limits are a much
more difficult problem to address since the kernel
has little control over how much data is being sent
by the remote machine. The only way to limit the
receive bandwidth is to limit the amount of data
that is acknowledged with TCP ACK'’s. Unfortu-
nately, this is not an easy thing to do and AltQ
does not support it. Since this support was not
in AltQ, we decided not to include this support
in our project. Our project has most of the hooks
that would be needed if AltQ ever receives this

12

support, though.

More in general, AltQQ was mainly designed as a
bandwidth shaping system for use on routers. The
lack of receive support on a router does not mat-
ter, as it sends everything that is receives. Also,
AltQ was designed with the idea that the set of
classes and bandwidth limits would be setup at
system boot time and stay mostly constant there-
after. nlimit adds dynamic changing of band-
width limits, which caused us a number of debug-
ging problems. In the end, AltQ handles dynamic
changes in limits fairly well, but it took a number
of workarounds to get it to manage this properly.

8 Conclusions

The nlimit kernel-based bandwidth limiting sys-
tem provides a simple mechanism for programs
and users to limit their bandwidth consumption.
nlimit is effective at limiting the bandwidth in
a number of common situations. It successfully
limits connections, limits sockets in a process, and
limits entire users. It also has an easy to use API
and client program.

The benefits of nlimit increase in value when
used on a slower network connection. Saturating
the full capacity of a connection is easier on slow
networks and is therefore more important to exer-
cise control over the bandwidth usage of multiple
programs.

References

[1] Cro, K. Framework for alternate queue-
ing: Towards traffic management by pc-unix
based routers. In Proceedings of USENIX
1998 Annual Technical Conference (June
1998).

CHo, K. Managing traffic with alt. In
USENIX 1999 Annual Technical Conference:
FREENIX Track (June 1999).

Froyp, S., AND JacoBsoN, V. Link-

sharing and resource management models for
packet networks. IEEE/ACM Transactions

REFERENCES

REFERENCES

[10]

[11]

on Networking 3, 4 (August 1995). http:
//www.icir.org/floyd/cbqg.html/.

HuBerr, B. Wonder shaper. http://
lartc.org/wondershaper/.

HuBeErT, B. Dummynet: a simple ap-
proach to the evaluation of network
protocols. ACM SIGCOMM Computer

Communication Review 27, 1 (January
1997). http://citeseer.nj.nec.com/
rizzo9Y/dummynet.html.

INTERNET ENGINEERING TASK FORCE.
Diffserv. http://www.ietf.org/html.
charters/diffserv-charter.html.

INTERNET ENGINEERING TASK FORCE.
Intserv. http://www.ietf.org/html.
charters/intserv-charter.htmll.

KAME ProJECT. The kame project. http:
//www.kame.net/.

NETBSD ProJECT. Netbsd. http://www.
netbsd.org.

Risso, F., aAND GEVROS, P. Operational

and performance issues of a CBQ router.
ACM SIGCOMM Computer Communication
Review 29, 5 (October 1999).

SANFILIPPO, S. Netbrake. http://www.
hping.org/netbrake/.

13

http://www.icir.org/floyd/cbq.html/
http://www.icir.org/floyd/cbq.html/
http://lartc.org/wondershaper/
http://lartc.org/wondershaper/
http://citeseer.nj.nec.com/rizzo97dummynet.html
http://citeseer.nj.nec.com/rizzo97dummynet.html
http://www.ietf.org/html.charters/diffserv-charter.html
http://www.ietf.org/html.charters/diffserv-charter.html
http://www.ietf.org/html.charters/intserv-charter.html
http://www.ietf.org/html.charters/intserv-charter.html
http://www.kame.net/
http://www.kame.net/
http://www.netbsd.org
http://www.netbsd.org
http://www.hping.org/netbrake/
http://www.hping.org/netbrake/

	Introduction
	Existing Solutions

	Related Work
	ALTQ
	Class-Based Queuing (CBQ)
	Netbrake
	Wonder Shaper
	DummyNet
	Diffserv and Intserv

	API Design
	Socket API
	Device API
	nlimit Utility

	Kernel Design
	Queuing Discipline
	Class Hierarchy
	Limit Operations
	Packet Classification

	Event Traps
	Data Structure Modifications

	Evaluation
	Methodology
	Verifying Functionality
	Socket Limits
	Process and User Limits

	Low Bandwidth Connections
	Latency
	Performance

	Future Work
	Conclusions
	Use of the AltQ Framework

